Course Title:	Statistical Inference-I
Course Code:	STAT-402
Semester:	VII
Credit Hours:	3 Credit Hours
Pre-requisites:	N / A

Learning Outcomes

By the end of this course, students will be able to:

- 1. Have vast knowledge about point estimation and properties of a good estimator.
- 2. Tackle the problems related to Cramer-Rao inequality and Minimum variance bound estimators.
- 3. Get an insight on Bayes estimation with examples.

Course Outline

Unit 1

1.1 Point Estimation and Properties of an Estimator

Point estimation and problems of estimation. Properties of a good estimator: Unbiasedness, Consistency, Efficiency and Sufficiency. Mean-squared error. Consistency and Best asymptotically normal estimator. Minimal sufficient statistics. Joint sufficiency. Exponential family. Sufficiency and Completeness. Cramer-Rao inequality.

1.2 Minimum Variance Bound estimators

Rao-Blackwell and Lehmann-Sheffe theorems. Uniformly Minimum Variance Unbiased estimators. Joint completeness. Location invariant and scale-invariant estimators. Pitman estimators for location and scale.

Unit 2

2.1 Bayes Estimation

Bayes estimators. Prior and Posterior distributions. Posterior Bayes estimators. Loss function and Risk function. Bayes estimator, Minimax Methods of estimation.

• Teaching-learning Strategies:

Class Lecture method, which includes seminars, discussions, assignments and projects. (Audio-visual tools are used where necessary)

• Assignments-Types and Number with calendar:

According to the choice of respective teacher.

• Assessment and Examinations:

According to the University's Semester Rules.

Sr. No.	Elements	Weightage	Details
1	Midterm	35%	It takes place at the mid-point of the semester.
	Assessment		
	Formative	25%	It is continuous assessment. It includes: Classroom
2	Assessment		participation, attendance, assignments, and
			presentations, homework, attitude and behavior,
			hands-on-activities, short tests, quizzes etc.
3	Final	40%	It takes place at the end of the semester. It is mostly in
	Assessment		the form of a test, but owing to the nature of the course

	the teacher may assess their students based on term
	paper, research proposal development, field work and
	report writing etc.

Text Books

- 1. Casella, G., & Berger, R.L. (2008). *Statistical Inference*. Cengage Learning, New York, USA.
- 2. Hogg, R.V., & Tanis E.A. (2009). *Probability and Statistical Inference* (7th ed.). Macmillan Publishing Company, New York.

Suggested Readings

- Hoel, P.G. (1984). Introductions to Mathematical Statistics (5th ed.). John Wiley and Sons, New York.
- 2. Hogg, R.M., McKean, J., & Craig, A.T. (2013). *Introduction to Mathematical Statistics*. Prentice Hall, New Jersey, USA.
- 3. Lehman, E.L. (2003). *Theory of Point Estimation* (2nd ed.). John Wiley, New York.
- 4. Mood, A.M., Graybill, F.A., & Boes, D.C. (2007). *Introduction to the Theory of Statistics*. McGraw Hill, New York, USA.
- 5. Rao, C.R. (2001). Linear Statistical Inference and its Applications (2nd ed.). Wiley.